Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Numerical Study Of Pulsating Jet At Moderately Small Reynolds Numbers
Dolinský, Jiří ; Doupník, Petr (oponent) ; Popela, Robert (vedoucí práce)
This numerical study is focused on axisymmetric pulsatile jets of moderately small Reynolds numbers and their physics which has not been fully understood so far. The main goal of the thesis is to investigate and assess the effect of introducing time-harmonic velocity component onto the steady velocity component. At first, the steady case was resolved and verified, afterwards the pulsation was introduced and the unsteady solution was carried out. The numerical solution for steady axisymmetric jet has been verified based on asymptotic solution obtained by Hermann Schlichting [44]. Moreover, an original Schlichting's solution was corrected according to an experimental observation obtained by Andrade and Tsien [1], which reduces solution singularity in the near-nozzle area. This correction was proven to be a first-order correction of the original asymptotic solution from a mathematical standpoint by Revuelta et al [36]. The analytical solution was developed in MATLAB while for the numerical simulation, the Ansys Fluent was used and the time-accurate integration of the Navier-Stokes equations based on pressure-correction approach was employed in order to solve the problem. The pulsatile jet was calculated for a set of different parameters in order to assess their impact on the jet evolution. Finally, the possible application in the industry with regards to elimination of pollutants emerging during the combustion process was discussed.
Numerical Study Of Pulsating Jet At Moderately Small Reynolds Numbers
Dolinský, Jiří ; Doupník, Petr (oponent) ; Popela, Robert (vedoucí práce)
This numerical study is focused on axisymmetric pulsatile jets of moderately small Reynolds numbers and their physics which has not been fully understood so far. The main goal of the thesis is to investigate and assess the effect of introducing time-harmonic velocity component onto the steady velocity component. At first, the steady case was resolved and verified, afterwards the pulsation was introduced and the unsteady solution was carried out. The numerical solution for steady axisymmetric jet has been verified based on asymptotic solution obtained by Hermann Schlichting [44]. Moreover, an original Schlichting's solution was corrected according to an experimental observation obtained by Andrade and Tsien [1], which reduces solution singularity in the near-nozzle area. This correction was proven to be a first-order correction of the original asymptotic solution from a mathematical standpoint by Revuelta et al [36]. The analytical solution was developed in MATLAB while for the numerical simulation, the Ansys Fluent was used and the time-accurate integration of the Navier-Stokes equations based on pressure-correction approach was employed in order to solve the problem. The pulsatile jet was calculated for a set of different parameters in order to assess their impact on the jet evolution. Finally, the possible application in the industry with regards to elimination of pollutants emerging during the combustion process was discussed.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.